Mems - Based Thermal Management of High Heat Flux Devices Edifice : Embedded Droplet Impingement for Integrated Cooling

نویسنده

  • Cristina H. Amon
چکیده

Increases in microprocessor power dissipation coupled with reductions in feature sizes due to manufacturing process improvements have resulted in continuously increasing heat fluxes. The ever increasing chip-level heat flux has necessitated the development of thermal management devices based on spray and evaporative cooling. This lecture presents a comprehensive review of liquid and evaporative cooling research applied to thermal management of electronics. It also outlines the challenges to practical implementation and future research needs. This presentation also describes the development of EDIFICE: Embedded Droplet Impingement For Integrated Cooling of Electronics. The EDIFICE project seeks to develop an integrated droplet impingement cooling device for removing chip heat fluxes over 100 W/cm, employing latent heat of vaporization of dielectric fluids. Micro-manufacturing and MEMS (Micro Electro-Mechanical Systems) will be discussed as enabling technologies for innovative cooling schemes recently proposed. Micro-spray nozzles are fabricated to produce 50-100 micron droplets coupled with surface texturing on the backside of the chip to promote droplet spreading and evaporation. A novel feature to enable adaptive on-demand cooling is MEMS sensing (on-chip temperature, remote IR temperature and ultrasonic dielectric film thickness) and MEMS actuation. EDIFICE is integrated within the electronics package and fabricated using advanced micro-manufacturing technologies (e.g., Deep Reactive Ion Etching (DRIE) and CMOS CMU-MEMS). The development of EDIFICE involves modeling, CFD simulations, and physical experimentation on test beds. This lecture will then examine jet impingement cooling of EDIFICE with a dielectric coolant and the influence of fluid properties, micro spray characteristics, and surface evaporation. The development of micro nozzles, micro-structured surface texturing, and system integration of the evaporator will also be discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Microfluidic Cooling of Integrated Circuits

The thermal management of high heat fluxes is a critical roadblock in the way of higher-performance microelectronics. The ongoing reduction in microtransistor size translates into heat fluxes comparable to those encountered in nuclear reactions and rocket nozzles, but under much severer temperature constraints. Although the average heat flux may remain in the vicinity of 100 to 300 W/cm, the pe...

متن کامل

Ihtc14-22515 Experimental Characterization of Single and Multiple Droplet Impingement on Surfaces Subject to Constant Heat Flux Conditions

Spray cooling is one of the most promising technologies in applications which require large heat removal capacity in very small areas. Previous experimental studies have suggested that one of the main mechanisms of heat removal in spray cooling is forced convection with strong mixing due to droplet impingement. These mechanisms have not been completely understood mainly due to the large number ...

متن کامل

Single-Sided Digital Microfluidic (SDMF) Devices for Effective Coolant Delivery and Enhanced Two-Phase Cooling

Digital microfluidics (DMF) driven by electrowetting-on-dielectric (EWOD) has recently been attracting great attention as an effective liquid-handling platform for on-chip cooling. It enables rapid transportation of coolant liquid sandwiched between two parallel plates and drop-wise thermal rejection from a target heating source without additional mechanical components such as pumps, microchann...

متن کامل

Thermal Management in Embedded Systems Using MEMS

1. a exible thermal management system with the capability to remain viable for several generations of increased microprocessor performance and power, 2. simpli cation of the packaging, by eliminating the cooling core concept and replacing it with an innovative \self-ducting" design based on 3-D stacking of computational nodes, 3. microelectromechanical structures (MEMS) that allow active, dynam...

متن کامل

Assessment of High-Heat-Flux Thermal Management Schemes

This paper explores the recent research developments in high-heat-flux thermal management. Cooling schemes such as pool boiling, detachable heat sinks, channel flow boiling, microchannel and mini-channel heat sinks, jet-impingement, and sprays, are discussed and compared relative to heat dissipation potential, reliability, and packaging concerns. It is demonstrated that, while different cooling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003